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Abstract. Two questions on the topology of compact energy surfaces of natural two degrees
of freedom Hamiltonian systems in a magnetic field are discussed. We show that the topology
of this 3-manifold (if it is not a unit tangent bundle) is uniquely determined by the Euler
characteristic of the accessible region in configuration space. In this class of 3-manifolds for
most cases there does not exist a transverse and complete Bairction. We show that there

are topological obstacles for its existence such that only in the casg’s>ofs? and 73 such a
Poincaé section can exist.

1. Introduction

The question of the topology of the energy surface of Hamiltonian systems was already
treated in the 1920s by Birkhoff [1] and Hotelling [2, 3]. Birkhoff proposed the ‘streamline
analogy’ [1], i.e. the idea that the flow of a Hamiltonian system on the energy surface could
be viewed as the streamlines of an incompressible fluid evolving in this manifold. Extending
the work of Poinca [4] he noted that it might be difficult to find a transverse Poi@car
section which is complete (i.e. for which every streamline starting from the surface of
section returns to it) [5]. Hotelling classified some of the topologies of energy surfaces with
two degrees of freedom. In 1970 Smale [6] initiated the study of ‘topology and mechanics’
from the modern point of view. This work had a great influence and stimulated a lot of
research especially in the Russian school of mathematics, see e.g. [7-12].

We want to take the present knowledge about the topology of energy surfaces of natural
Hamiltonian systems and return to the question of Birkhoff about the existence of transverse
and complete Poincarsurfaces of section. The list of topologies of natural Hamiltonian
systems is in principle known, but here we collect the results we need and give a proof
using Heegard splittings which explicitly constructs an embedding of the split halves of our
‘manifold of streamlines’ intdR3. With the help of the computer it is possible to create a
realistic picture of Birkhoff's ‘streamline analogy’ using our result. In the second part the
list of topologies of energy surfaces is compared to the list of manifolds that can have a
complete and transverse Poingaection, i.e. which admit the structure of a bundle &/er
with a Riemann surface as a fibre. In [13] we noted that there can be topological obstacles
for the existence of a transverse and complete Painsaction. We now show that in the
class of all energy surfaces of natural Hamiltonian systems (possibly with a magnetic field)
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there can only exist a transverse and complete Pdnsection if the energy surface is a
direct product ofS? or 72 with S?.

2. Topology of energy surfaces

Consider a time-independent Hamiltonian system with two degrees of freedom, possibly
in a magnetic field, where the kinetic energy is a positive definite quadratic form in the

velocities. These Hamiltonians will be called natural in the following. The smooth and

orientable two-dimensional configuration space is denote@byrhe system is described

by the Lagrangian on the tangent bundl@® given by

L(g,9) = 3(d, T(@)9) — V(@) + (A@), q) @

with a positive definite matriX’(¢), potential V(¢) and vector potentialA(q), where(, )
denotes the Euclidean standard scalar product. Sind ged the momenta arg = 9L /94
and the Legendre transformation T Q gives the Hamiltonian

H(g.p) = 3{(p — A@). THQ)(p — AWQ) + V(@) 2

The accessible regio@; in Q for fixed energyH = h is the set of points inQ for which
the potential energy does not exceed the total energy

Or=1{qeQ|V(g) <h) 3

which we assume to be compact. Each connected componéntedn be treated separately.
The ovals of zero velocity witly = 0 or equivalentlyV (¢) = h are the boundaries af,,,

if any. The number of ovals of zero velocity, i.e. the number of disjoint components of
30, is denoted byi. By abuse of language we denote the part®ofvhich are excluded
from Q,, by the ovals of zero velocity as ‘holes’ iQ. In the following we always assume
thath is a regular value oH (¢, p), such that the energy surface

En=1{(q.p) eT*Q|H(q, p) =h} 4)

is smooth. Moreover it is compact becau@g is assumed to be compact. Note tl@t

is the projection of;, onto Q. If Q is compact it is a Riemann surfad§ whose genus

we denote byg. For a givenQ;, with d > 0 there are infinitely many compa@ that
realize thisQ, because we might attach arbitrarily complicated surfaces to the boundary
of the hole. For exampleQ, ~ D? is realized by any compaa® if the potential is a
Morse function and the energy is sufficiently low. In order to remove this arbitrariness we
always think of the holes as to be filled with disk¥. Our arguments do not depend on
this, because they are based @p, and not onQ. Most simple examples of Hamiltonian
systems have a non-compact configuration space, in partiRélar S* x R. In these cases
there must be ovals of zero velocity in order to malg (and thus&,) compact. Filling
these holes withD? we obtain a compact, such that these cases are included in our
treatement.

The case ofd = 0, i.e. the motion on a compact Riemann surfage= Rg (with
sufficiently high energyh > V(q) everywhere) almost by definition (4) has an energy
surface homeomorphic to the unit tangent bundleR?.f Here we want to classify all the
other cases witld > 0.

Proposition 1 The topology of the energy surfaég of a natural two degree of freedom
Hamiltonian system with compact accessible region of configuration gpacedetermined
by the Euler characteristig of Q) if there is at least one oval of zero velocity.
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Proof. Our proof is elementary and constructive: we emigeh R® and attach ellipses of
possible velocity to every point a@,. Cutting these velocity ellipses we obtain a Heegard
splitting of &£, from which the topology of}, is determined.

Since Q is an orientable Riemann surface it can be embeddé&Fin

O0~{reR® F@) =0). (5)

In the Lagrangian (1) we now chooseas global coordinates with the additional constraint
F (@) = 0. The energy functior£ (¢, ¢) on T Q is given by

E(q.¢) = 3(4. T(@)q) + V(q) (6)
and similarly
E(r /) = 3, T(r)i) + V(r) (F.,i)=0 7)

whereT|Q =T(g) andf/|Q = V(q) and the tildes are omitted in the following. The reason
for treating everything oI’ Q instead ofT*Q, is that the linear terms in the momenta in
the Hamiltonian due to the vector potenti&) are not present if the energy is treated as a
function of the velocitieg;. Moreover, note that with non-vanishimgon the boundary of
Q) we have zero velocity but not zero momentum.

With E(r, 7) we have an embedding &}, into Euclidean spac®® given by

En = {(r,;) e R®|E(r, i) =h, F(r) =0, (F,,7) = O}. (8)

Following Birkhoff, Hotelling and Smale [1, 2, 6, 14] the energy surface is constructed
by attaching circles in velocity space to every point in the (accessible) configuration space
Q,. This gives a fibre bundle with bagg, and fibreS* where the fibre is contracted to a
point ond Q;. In our embedding this means to take any peioh Q c R® and to calculate
the remaining kinetic energy — V(r). OutsideQ,, it is negative, on the boundary it is
zero and inside o), it is positive. In the latter case the possible velocities are given by
(F, Tr) = 2(h — V (r)). The constraint ensures thais in the tangent plane af (r) = 0 at
r. Therefore the possible velocities are located on an ellipse in the tangent plane.

In order to cut the velocity ellipses at every point we need a device to fix a zero position
on thisS?, i.e. we want to construct a global section for the fibre bundle. This global section
can be constructed with the help of a nowhere vanishing vectorgfiefdQ,. On a Riemann
surfaceQ of genusg # 1 there does not exist a vector fi&dvithout equilibrium points. If,
however, there are holes (or punctures) in the Riemann surface we can caasinittsuch
that the restriction t@,, is without singularities, essentially by moving the singularities into
the hole(s). Note that at this point the assumptios 0 is necessary (except for the case of
0 = T?). Let&(r) be specified in the embeddingR? such thatiz(r), F,) = 0. Denote by
N(r) the normal vector of the surfadé(r) = 0. Usingé&(r) every non-zero velocity ellipse
can be cut into two halves specified bW (r), £(r) x r) > 0 and(N (r), £(r) x ) < 0, the
two halves joining at the place whefeands are (anti)-parallel. In this way we cd}, into
two topological equivalent pieces

& =) €& | £ (N, §(r) x 7) = 0) ©)
such that

E =& UE and 3ET =098 =& NE, . (10)
The two pieces can be embedded iftd in the following way. Each half of the velocity
ellipse is parametrized by the scalar prod{&i), 7). The embedding is defined by

M : é‘hi — R3

. . (11)
(r,r) B>r+aN@E)Er),r)
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where « is a sufficiently small constant in order faf to be a homeomorphism. The
two solid handle—bodieM(E,j) and M (&,) coincide inR? and define a Heegard splitting
of & [15-17]. Their boundaries/(3&,*) have to be identified to re-obtaifi,. The
most important point is that the gluing homeomorphism frafitd&,™) to M(3E,7) is
the identity map, as is obvious from our construction. The topolog¥,ofs therefore
completely determined by the topology M(E}f), which in turn is determined by its
boundaryd M (&) = M(3E, ) = B.

The solid handle—bodyl/l(g,f) can be thought of as a ‘thickened®, because it is
obtained by attaching small intervals in the direction of the normal to every interior point,
while the interval is contracted to a point on the ovals of zero veldbfly. The boundary
B of the solid handle-body is obtained by deleting all the interior points of the attached
intervals. The resulting Riemann surface is obtained from two copigs, dtorresponding
to the two endpoints of each interval) glued together along the ovals of zero velazity
Analogous to the construction of the energy surface as a bundle@yevith fibre S* we
can think of 3 as a bundle ove@, with fibre S° (i.e. two points) where the two points are
identified ona Qy,.

0, is determined by the genus ¢f and the number of holes The Euler characteristic
x of Q, is 2—2g —d because every hole removes one triangle from the triangulati@j of
which decreaseg by one [15]. To calculate (B) we just doubley (Q,) because gluing
two holes (i.e. triangles) leaves unchanged:

x(B)=2x(Qp) =4—-4g—-2d=2—-22g+d—-1) (12)
such that we obtain@2+d — 1 = 1 — x(Qy,) for the genus of3. This proves that the
topology of &, is determined by the Euler characterisgioof Q. O

Denote the genus df by b = 2g+d — 1. Forb = 0, 1 there is only one possibility for
0,, namely withg = 0 andd = 1, 2. But for largerb we obtain a non-trivial equivalence
of energy surfaces for systems on different configuration spaces. The first example of non-
trivial equivalence is obtained fo§ = 0, d = 3, i.e. a sphere with three holes, which
topologically gives the same energy surface asgoe 1, d = 1, i.e. a torus with one
hole. The former system can be realized, for example, by certain spinning tops, while
the latter occurs in the double pendulum [13]. Note that ¢hein these examples are
not homeomorphic to each other, even though their Euler characteristic is the same. Most
notably for the spinning to,, can be embedded inf&? while for the double pendulum
this is impossible.

Our next task is to show that if (Q,,) is different for two energy surfaces then they
are not homeomorphic and to actually determine the topolog¥,of The result is well
known, in principle, because it follows from the Heegard splittings obtained above (see
e.g. [15-17]). We nevertheless give an elementary argument for the cases we need.

Proposition 2 Let there be at least one oval of zero velocity in the compagtand
denote the Euler characteristic by(Q,) = 1 — b. For b = 0 the energy surfac€, is
homeomorphic tas®. Forb > 0 &, is homeomorphic to the connected sumbatopies of
St x 52

Proof. We choose the simplest cage= 0 which allows for all possiblé. Sinced > 0 we
can map the accessible regign of the spheres? to the Euclidean plane. The resulting disc
D? hasb = d — 1 holes. An example can be constructed by consideting p2/2+ V (r)
(z =0, p. = 0), with b distinct pointsr; and V (r) = r2 4+ 1/|r —r;|.

For all » we haveN(r) = (0,0,1) and can, for example, takgr) = (0,1,0) as a
vector field, such that¢, 7) = y. For this special choice df we actually think ofM(S,f)
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as a projection of, into the Euclidean spacdg, y, y), which produces a double cover in
the interior because the sign fis lost.

For b = 0 Q, is a disc D? and attaching the intervals of allowefl at fixed
r (corresponding to each half of the ellipse of possible velocities) we obtain a ball
D3 >~ M(&). Gluing two D® along their common boundas? ~ M (3&,*) givess® ~ &,.

If b =1 thenQ, is an annulus. Attaching the intervals pfve now obtain a solid torus
D? x §*, whose boundary %2, i.e.b = 1. Gluing two solid tori by the trivial identification
along their boundary gives! x S2. Note that the trivial identification is important fér> 0,
because taking a different gluing homeomorphism would yield a different 3-manifold, for
example,s2 or RP2 for b = 1.

In the case ob = 2 we haveQ;, homeomorphic to a dis®? with two holes inside.
Attaching the intervals we obtain a solid handle—badyg,f) whose boundary has genus
b = 2. Now we cut this handle-body into two parts separating the two holes, such that
we obtain two solid toriS* x D?. The cut is along a dis®?. Gluing each solid torus to
its partner (leaving thé? of the cut unidentified) we obtaifi' x $? with a solid ball D?
removed. The boundary of thi®3 is $2, which is obtained by gluing th®? of the cut to
its partner along their boundary. Now we have to restore the cut to ofifaire. we have
to glue two copies ofs x $? along the boundary of #° removed from the two copies.
This is exactly the operation of the connected sum and we oBjam St x S%#St x §?
(sometimes this manifold is denoted 7). For b > 2 the same process is repeated
times and we obtain the connected sunbafopies ofS* x S2. O

We summarize our results in the following table, whee\ nD? denotes the two-
dimensional manifoldv with »n disks D? removed. By a recent result from Kozlov and
Ten [18] all of the combinations of), and &, listed in the table can even be realized by
natural Hamiltonian systems that are completely integrable.

Let us remark that in the cases without ovals of zero velocity the energy surface is the
unit tangent bundle. Most notabl9 = Q;, ~ S? gives&, ~ RP3andQ = Q, ~ T? gives
&, ~ T3. All possible&, can be realized as mechanical systems. However, most often one
encounterss®, S x §2, RP2 and T3. In the dynamics of the spinning top one can find
#S1 x §%2 and #5* x §?[9,11,12].

x(0n) 1 0 -1 o 1-b
b 0 1 2 - b
& 53 Stx 82 #8tx 852 ... #Slxs?
B| s? T2 R2 - R2
0 | On |
52 §2\ D? S§2\2D?  §2\3D? ... S2\(b+1)D?
R? D? D?\ D?> D?\2D?> ... D?\bD?
R x St D? D'x S Dlxs'\D? ... D'xS'\(b-1D?
T2 T?\ D? .. T2\ (b—1)D?
.2 :2 2
R? RZ\ (b+1-2¢)D
Rfyyzy \ D?



4982 A Bolsinov et al
3. Non-existence of complete transverse Poindarsections

With the complete list of topologies of compact energy surfaces of natural Hamiltonian
systems with two degrees of freedom at hand, we now want to show that in all cases,
exceptS? x §? and T3, a complete transverse Poineagection is impossible. Using the
result of the last section we see that the two exceptions are obtained(fjatimat contain
ST as a trivial factor, i.e. forQ, ~ S* x D! or T2,

Let the Poinca¥ section be defined by a smooth functi®g@, p) = 0 on phase space.
The surface of sectiolX;, is obtained by restriction to the energy surface,

Ey=1{(q.p) € T*Q|H(q, p) =h,S(q, p) =0} (13)
If there is more than one component each of them can be treated separately. Excluding
cases with critical pointsy, is a Riemann surface of arbitrary genus embeddet), inThe
equations of motion are given by the Poisson bradket {F, H}. The surface of section
is transversal to the flow if

Sl #0 forall (q,p)e . (14)
Then the Poinc& mapP : &, — X, is defined by
(q.p) € Th —> g7 1P (q. p) € Ty (15)

whereg’ denotes the Hamiltonian flow andg, p) is the first return time. We assume that
the section is transverse addcomplete [13], i.e. that every orbit starting éh, returns to
¥, and therefore is finite andP is well defined on all o&,,. A Poincaé section with these
properties will be called complete and transverse in the following. The Pé&meapP has
degree one due to the existence and uniqueness of the solutions of the differential equation
which connects pre-image and image by an integral curve. HEnbas the structure of a
fibre bundle with bases?® and fibrex, [17]. Let ¢ be in 1. For every base point the
fibre consists of all pointg?*@-»/27 (¢, p) such that(g, p) € =, for ¢ = 0. The converse
formulation is that given the Poindamapping the energy surface can be obtained by a
suspension into a flow which automatically creates the structure of fibre bundle with base
St and fibrex,,.

In [13] we have shown that fof, ~ $° the existence of a transverse section is in
contradiction with Liouville’s preservation of phase space volume. In the following we use
different arguments based on the above bundle structure to treat the general case.

Proposition 3 A complete transverse Poinéasection for a natural two degrees of freedom
Hamiltonian system with compa@,, can only exist for energy surfaces homeomorphic to
St x 82 or T3. If it exists it can only be realized by the trivial bundle.

Proof. Let us assume there exists a complete transverse secti§n ihhis implies that
&, admits the structure of a fibre bundle with ba®eand fibres),

& 2 st (16)

as already explained. Let us consider the exact homotopy sequence of this bundle

whH - mE) - mE) - mSH

0 - m(E) - mE) — L (17)

which implies

m1(&p) /1 (En) = Z (18)
and therefore

m1(2p) C 7w1(En)- (19)
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If &, is a direct product withs* this is obviously possible because
1M x N) =m1(M) x m1(N).

For the energy surfacg* x S? and T2 we have the trivial bundles as a possible solution.

For all other energy surfaces of natural system the bundle structure (16) is impossible.
We first treat the cases with ovals of zero velocity. Becaug&®) = id (19) cannot hold
becaused does not have a non-trivial subgroup. Therefore the energy susfadees not
admit the bundle structure (16) and therefore does not admit a complete transverse section.
For all the other cases of energy surfaces where there are ovals of zero velogifywe
haveb > 1 and

TSt x §2) = (2 x SY s+ My (S2x SH =ZxZx---xZ  (20)

i.e. 1 is a free group withb generators. Every subgroup of a free group is a free group,
so by (19)71(X,) must be a free group. BUE, is a Riemann surfac&? of arbitrary
genuss and; of any Riemann surface never is a free groupsfor 0 [17], which gives
us a contradiction. Fos = 0 we haver1(5?) = id and (18) givest(&,) = Z, which
contradicts (20) becauge> 2.

We now turn to energy surface obtained fraby without ovals of zero velocity. If
Q0 = 0, = §? we have&, ~ RP® and 7, (RP®) = Z, is a finite group, so that similar to
the case ofs® equation (19) cannot be fulfilled. F@ = Q, = T2 we have already seen
that&, = T3 admits a complete transverse section.

The remaining cases are the energy surface obtained fiocm Q) = R§ with ¢ > 1,
i.e. the corresponding unit tangent bundles. These energy surfaces already carry a bundle
structure, but with bas&? and fibres*

& =5 R? >2 21

h—> g 8 =z ( )

as opposed to the required structure for a complete transverse section in (1&),witiR?,
2

&2 st s>o (22)

Denote each of the unit tangent bundles described by (21) layd each of the manifolds
admitting a complete transverse Poirieaection byP. We now show thaG, = 71(U)
andG, = m,(P) are different for any choice di and P. The method of proof is inspired
by [19].

Let us first treat the cases with> 2. As usual for any groufi; denote byC(G) is
centre and by @, G] its commutant. Now and P are different because

[G,,G,]NC(G,) =id (23)
but
[G.. GINC(G,) #id (24)

contains at least an infinite cyclic group.

In (18) we observed tha, contains a normal subgrou@, isomorphic tom:(Xy),
such thatGp/G/p = 7 = m(SY). In particular the factor group is commutative. Since
the commutant is a minimal normal subgroup such that the corresponding factor group is
commutative we haved,, G,] € G,,. But the fundamental group of a Riemann surface
has no centre, i.eC(G;,) =id. Therefore,G;, does not intersect witl’(G,) and so does
not [G,, G,], because it is a subgroup Gf, and we obtain (23).

Consider the grou, nhow (see, e.g., [17]). It can be represented as the group generated
by ai, b1, ..., ag, b, with the following relations.
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(i) Let o be the Euler number of the unit tangent buntile Then
arbray*bri—1.. . agbea,; bt = z°. (25)

In our casex is just the Euler characteristic = 2 — 2g.

(i) z commutes with any element of the grodfy. In particularz® belongs toC(G,).

But it is easily seen from the first relation that € [G,, G,]. So the intersection
[G., G, ] N C(G,) contains a least” as stated in (24). Therefore we have shown that the
fundamental groups are different, so the manifdldsind P are also different.

Now we have to consider the cases- 0, 1, where the surface of sectidfy, is S2 or
T2. In the case of the torus;(P) can be generated by three generatar$, andz with
the relations

ab = ba
zaz = ¢(a) (26)
bzt = ¢ (b)

where ¢ is some automorphism of the fundamental group7df i.e. the commutative
subgroup generated hyandb. It follows from this that the 1-homology group has at least
one generator of infinite order and no more than three generators. But the corresponding
homology group forU has more than three generatogs> 2). In the case of the sphere

as a surface of section the first homology groupPofs Z so the same argument holds as

for T2, which concludes the proof that for the unit tangent bundleREoWith g > 2 there

does not exist a complete transverse section.

Finally we show that for the cas€s = S'x S? and&, = T3 where a complete transverse
section exists it can only be constructed from the trivial bundle &ith= S?, respectively
¥, = T2. Recall that in both cases;(&,) is commutative. Now both manifolds cannot
be realized as? bundles with baseRg, g > 2, because the homotopy group of this bundle
contains the non-commutative homotopy group of the b‘éfsas a subgroup, see (19). In
the case o€, ~ T2 we haveri(&,) = Z°. But as already mentioned the homology group
of the =, = 52 bundle overs* has only one generator, so that the only possibility is with
¥, = T?. Moreover, we must have = id in (26) in order to obtairZ3. Therefore the
Poincaé section must be obtained from the trivial bundle. Epr~ S x $2 we have
71(E) = Z. But the homotopy group of th&! bundle of £, = T2 containsr1(X,) = Z?
as a subgroup so the only possibility is wiil = S2. Finally the only orientables? bundle
over St is the trivial bundle. O

4. Discussion

The difficulty in establishing a complete transverse section was already noted by Birkhoff
[5], who required a coordinate transformation to exist, which globally introduces an angle
¢ in & and moreover thap # 0. We were not dealing with the second requirement here.
Instead we have shown that there are topological obstacles for the existence of such an angle
in most energy surfacefmdependenthyof the dynamics. We established the non-existence

of complete transverse sections in most cases. In particular, there never exists a complete
transverse section for geodesic flows on compact orientable Riemann surfaces. For the
question of existence in the exceptional caSgs~ S* x §2 or T2 the dynamical system

has to be considered, i.e. Birkhoffs second condition has to be checked. This additional
condition makes it difficult to find complete transverse sections even in the two special
cases. In [13] we have shown that for time-reversal Hamiltonians transverse sections for
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which X, has the same symmetry are impossible. The only examples of complete transverse
sections we know of (except for a trivial time periodic forcing which we are not considering
here), have a strong vector potentilg) breaking the time-reversal symmetry (of course
their Q;, must be a torus or a cylinder) [13]. These considerations have been our motivation
to drop the requirement of transversality and instead try to construct Peiseations that

are complete, see [13]. We suspect that it is impossible to find a transverse and complete
Poincaé section for a natural time-reversible Hamiltonian system.
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