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Abstract. Two questions on the topology of compact energy surfaces of natural two degrees
of freedom Hamiltonian systems in a magnetic field are discussed. We show that the topology
of this 3-manifold (if it is not a unit tangent bundle) is uniquely determined by the Euler
characteristic of the accessible region in configuration space. In this class of 3-manifolds for
most cases there does not exist a transverse and complete Poincaré section. We show that there
are topological obstacles for its existence such that only in the cases ofS1 × S2 andT 3 such a
Poincaŕe section can exist.

1. Introduction

The question of the topology of the energy surface of Hamiltonian systems was already
treated in the 1920s by Birkhoff [1] and Hotelling [2, 3]. Birkhoff proposed the ‘streamline
analogy’ [1], i.e. the idea that the flow of a Hamiltonian system on the energy surface could
be viewed as the streamlines of an incompressible fluid evolving in this manifold. Extending
the work of Poincaŕe [4] he noted that it might be difficult to find a transverse Poincaré
section which is complete (i.e. for which every streamline starting from the surface of
section returns to it) [5]. Hotelling classified some of the topologies of energy surfaces with
two degrees of freedom. In 1970 Smale [6] initiated the study of ‘topology and mechanics’
from the modern point of view. This work had a great influence and stimulated a lot of
research especially in the Russian school of mathematics, see e.g. [7–12].

We want to take the present knowledge about the topology of energy surfaces of natural
Hamiltonian systems and return to the question of Birkhoff about the existence of transverse
and complete Poincaré surfaces of section. The list of topologies of natural Hamiltonian
systems is in principle known, but here we collect the results we need and give a proof
using Heegard splittings which explicitly constructs an embedding of the split halves of our
‘manifold of streamlines’ intoR3. With the help of the computer it is possible to create a
realistic picture of Birkhoff’s ‘streamline analogy’ using our result. In the second part the
list of topologies of energy surfaces is compared to the list of manifolds that can have a
complete and transverse Poincaré section, i.e. which admit the structure of a bundle overS1

with a Riemann surface as a fibre. In [13] we noted that there can be topological obstacles
for the existence of a transverse and complete Poincaré section. We now show that in the
class of all energy surfaces of natural Hamiltonian systems (possibly with a magnetic field)
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there can only exist a transverse and complete Poincaré section if the energy surface is a
direct product ofS2 or T 2 with S1.

2. Topology of energy surfaces

Consider a time-independent Hamiltonian system with two degrees of freedom, possibly
in a magnetic field, where the kinetic energy is a positive definite quadratic form in the
velocities. These Hamiltonians will be called natural in the following. The smooth and
orientable two-dimensional configuration space is denoted byQ. The system is described
by the Lagrangian on the tangent bundleT Q given by

L(q, q̇) = 1
2〈q̇, T (q)q̇〉 − V (q) + 〈A(q), q̇〉 (1)

with a positive definite matrixT (q), potentialV (q) and vector potentialA(q), where〈, 〉
denotes the Euclidean standard scalar product. Since detT 6= 0 the momenta arep = ∂L/∂q̇

and the Legendre transformation toT ∗Q gives the Hamiltonian

H(q, p) = 1
2〈(p − A(q)), T −1(q)(p − A(q)〉 + V (q). (2)

The accessible regionQh in Q for fixed energyH = h is the set of points inQ for which
the potential energy does not exceed the total energy

Qh = {q ∈ Q | V (q) 6 h} (3)

which we assume to be compact. Each connected component ofQh can be treated separately.
The ovals of zero velocity witḣq = 0 or equivalentlyV (q) = h are the boundaries ofQh,
if any. The number of ovals of zero velocity, i.e. the number of disjoint components of
∂Qh is denoted byd. By abuse of language we denote the parts ofQ which are excluded
from Qh by the ovals of zero velocity as ‘holes’ inQ. In the following we always assume
that h is a regular value ofH(q, p), such that the energy surface

Eh = {(q, p) ∈ T ∗Q | H(q, p) = h} (4)

is smooth. Moreover it is compact becauseQh is assumed to be compact. Note thatQh

is the projection ofEh onto Q. If Q is compact it is a Riemann surfaceR2
g whose genus

we denote byg. For a givenQh with d > 0 there are infinitely many compactQ that
realize thisQh because we might attach arbitrarily complicated surfaces to the boundary
of the hole. For example,Qh ' D2 is realized by any compactQ if the potential is a
Morse function and the energy is sufficiently low. In order to remove this arbitrariness we
always think of the holes as to be filled with disksD2. Our arguments do not depend on
this, because they are based onQh, and not onQ. Most simple examples of Hamiltonian
systems have a non-compact configuration space, in particularR2 or S1 ×R. In these cases
there must be ovals of zero velocity in order to makeQh (and thusEh) compact. Filling
these holes withD2 we obtain a compactQ, such that these cases are included in our
treatement.

The case ofd = 0, i.e. the motion on a compact Riemann surfaceQ = R2
g (with

sufficiently high energyh > V (q) everywhere) almost by definition (4) has an energy
surface homeomorphic to the unit tangent bundle ofR2

g. Here we want to classify all the
other cases withd > 0.

Proposition 1. The topology of the energy surfaceEh of a natural two degree of freedom
Hamiltonian system with compact accessible region of configuration spaceQh is determined
by the Euler characteristicχ of Qh if there is at least one oval of zero velocity.
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Proof. Our proof is elementary and constructive: we embedQ in R3 and attach ellipses of
possible velocity to every point ofQh. Cutting these velocity ellipses we obtain a Heegard
splitting of Eh from which the topology ofEh is determined.

SinceQ is an orientable Riemann surface it can be embedded inR3:

Q ' {r ∈ R3 | F(r) = 0}. (5)

In the Lagrangian (1) we now chooser as global coordinates with the additional constraint
F(r) = 0. The energy functionE(q, q̇) on T Q is given by

Ẽ(q, q̇) = 1
2〈q̇, T (q)q̇〉 + V (q) (6)

and similarly

Ẽ(r, ṙ) = 1
2〈ṙ , T̃ (r)ṙ〉 + Ṽ (r) 〈Fr, ṙ〉 = 0 (7)

whereT̃ |Q = T (q) andṼ |Q = V (q) and the tildes are omitted in the following. The reason
for treating everything onT Q instead ofT ∗Q, is that the linear terms in the momenta in
the Hamiltonian due to the vector potentialA, are not present if the energy is treated as a
function of the velocitieṡq. Moreover, note that with non-vanishingA on the boundary of
Qh we have zero velocitẏq but not zero momentump.

With E(r, ṙ) we have an embedding ofEh into Euclidean spaceR6 given by

Eh ' {(r, ṙ) ∈ R6 | E(r, ṙ) = h, F (r) = 0, 〈Fr, ṙ〉 = 0}. (8)

Following Birkhoff, Hotelling and Smale [1, 2, 6, 14] the energy surface is constructed
by attaching circles in velocity space to every point in the (accessible) configuration space
Qh. This gives a fibre bundle with baseQh and fibreS1 where the fibre is contracted to a
point on∂Qh. In our embedding this means to take any pointr on Q ⊂ R3 and to calculate
the remaining kinetic energyh − V (r). OutsideQh it is negative, on the boundary it is
zero and inside ofQh it is positive. In the latter case the possible velocities are given by
〈ṙ , T ṙ〉 = 2(h − V (r)). The constraint ensures thatṙ is in the tangent plane ofF(r) = 0 at
r. Therefore the possible velocities are located on an ellipse in the tangent plane.

In order to cut the velocity ellipses at every point we need a device to fix a zero position
on thisS1, i.e. we want to construct a global section for the fibre bundle. This global section
can be constructed with the help of a nowhere vanishing vector fieldξ onQh. On a Riemann
surfaceQ of genusg 6= 1 there does not exist a vector fieldξ without equilibrium points. If,
however, there are holes (or punctures) in the Riemann surface we can constructξ on it, such
that the restriction toQh is without singularities, essentially by moving the singularities into
the hole(s). Note that at this point the assumptiond > 0 is necessary (except for the case of
Q = T 2). Let ξ(r) be specified in the embedding inR3 such that〈ξ(r), Fr〉 = 0. Denote by
N(r) the normal vector of the surfaceF(r) = 0. Usingξ(r) every non-zero velocity ellipse
can be cut into two halves specified by〈N(r), ξ(r) × ṙ〉 > 0 and〈N(r), ξ(r) × ṙ〉 6 0, the
two halves joining at the place whereξ and ṙ are (anti)-parallel. In this way we cutEh into
two topological equivalent pieces

E±
h = {(r, ṙ) ∈ Eh | ± 〈N(r), ξ(r) × ṙ〉 > 0} (9)

such that

Eh = E+
h ∪ E−

h and ∂Eh
+ = ∂Eh

− = E+
h ∩ E−

h . (10)

The two pieces can be embedded intoR3 in the following way. Each half of the velocity
ellipse is parametrized by the scalar product〈ξ(r), ṙ〉. The embedding is defined by

M : E±
h → R3

(r, ṙ) 7→ r + αN(r)〈ξ(r), ṙ〉 (11)
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where α is a sufficiently small constant in order forM to be a homeomorphism. The
two solid handle-bodiesM(E+

h ) andM(E−
h ) coincide inR3 and define a Heegard splitting

of Eh [15–17]. Their boundariesM(∂Eh
±) have to be identified to re-obtainEh. The

most important point is that the gluing homeomorphism fromM(∂Eh
+) to M(∂Eh

−) is
the identity map, as is obvious from our construction. The topology ofEh is therefore
completely determined by the topology ofM(E±

h ), which in turn is determined by its
boundary∂M(E±

h ) = M(∂Eh
±) = B.

The solid handle-bodyM(E±
h ) can be thought of as a ‘thickened’Qh because it is

obtained by attaching small intervals in the direction of the normal to every interior point,
while the interval is contracted to a point on the ovals of zero velocity∂Qh. The boundary
B of the solid handle-body is obtained by deleting all the interior points of the attached
intervals. The resulting Riemann surface is obtained from two copies ofQh (corresponding
to the two endpoints of each interval) glued together along the ovals of zero velocity∂Qh.
Analogous to the construction of the energy surface as a bundle overQh with fibre S1 we
can think ofB as a bundle overQh with fibre S0 (i.e. two points) where the two points are
identified on∂Qh.

Qh is determined by the genus ofQ and the number of holesd. The Euler characteristic
χ of Qh is 2−2g−d because every hole removes one triangle from the triangulation ofR2

g

which decreasesχ by one [15]. To calculateχ(B) we just doubleχ(Qh) because gluing
two holes (i.e. triangles) leavesχ unchanged:

χ(B) = 2χ(Qh) = 4 − 4g − 2d = 2 − 2(2g + d − 1) (12)

such that we obtain 2g + d − 1 = 1 − χ(Qh) for the genus ofB. This proves that the
topology ofEh is determined by the Euler characteristicχ of Qh. �

Denote the genus ofB by b = 2g +d − 1. Forb = 0, 1 there is only one possibility for
Qh, namely withg = 0 andd = 1, 2. But for largerb we obtain a non-trivial equivalence
of energy surfaces for systems on different configuration spaces. The first example of non-
trivial equivalence is obtained forg = 0, d = 3, i.e. a sphere with three holes, which
topologically gives the same energy surface as forg = 1, d = 1, i.e. a torus with one
hole. The former system can be realized, for example, by certain spinning tops, while
the latter occurs in the double pendulum [13]. Note that theQh in these examples are
not homeomorphic to each other, even though their Euler characteristic is the same. Most
notably for the spinning topQh can be embedded intoR2 while for the double pendulum
this is impossible.

Our next task is to show that ifχ(Qh) is different for two energy surfaces then they
are not homeomorphic and to actually determine the topology ofEh. The result is well
known, in principle, because it follows from the Heegard splittings obtained above (see
e.g. [15–17]). We nevertheless give an elementary argument for the cases we need.

Proposition 2. Let there be at least one oval of zero velocity in the compactQh and
denote the Euler characteristic byχ(Qh) = 1 − b. For b = 0 the energy surfaceEh is
homeomorphic toS3. For b > 0 Eh is homeomorphic to the connected sum ofb copies of
S1 × S2.

Proof. We choose the simplest caseg = 0 which allows for all possibleb. Sinced > 0 we
can map the accessible regionQh of the sphereS2 to the Euclidean plane. The resulting disc
D2 hasb = d − 1 holes. An example can be constructed by consideringH = p2/2+ V (r)

(z = 0, pz = 0), with b distinct pointsri andV (r) = r2 + ∑
1/|r − ri |.

For all b we haveN(r) = (0, 0, 1) and can, for example, takeξ(r) = (0, 1, 0) as a
vector field, such that〈ξ, ṙ〉 = ẏ. For this special choice ofξ we actually think ofM(E±

h )
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as a projection ofEh into the Euclidean space(x, y, ẏ), which produces a double cover in
the interior because the sign ofẋ is lost.

For b = 0 Qh is a disc D2 and attaching the intervals of alloweḋy at fixed
r (corresponding to each half of the ellipse of possible velocities) we obtain a ball
D3 ' M(E±

h ). Gluing twoD3 along their common boundaryS2 ' M(∂Eh
±) givesS3 ' Eh.

If b = 1 thenQh is an annulus. Attaching the intervals ofẏ we now obtain a solid torus
D2×S1, whose boundary isT 2, i.e.b = 1. Gluing two solid tori by the trivial identification
along their boundary givesS1×S2. Note that the trivial identification is important forb > 0,
because taking a different gluing homeomorphism would yield a different 3-manifold, for
example,S3 or RP 3 for b = 1.

In the case ofb = 2 we haveQh homeomorphic to a discD2 with two holes inside.
Attaching the intervals we obtain a solid handle-bodyM(E±

h ) whose boundaryB has genus
b = 2. Now we cut this handle-body into two parts separating the two holes, such that
we obtain two solid toriS1 × D2. The cut is along a discD2. Gluing each solid torus to
its partner (leaving theD2 of the cut unidentified) we obtainS1 × S2 with a solid ballD3

removed. The boundary of thisD3 is S2, which is obtained by gluing theD2 of the cut to
its partner along their boundary. Now we have to restore the cut to obtainEh, i.e. we have
to glue two copies ofS1 × S2 along the boundary of aD3 removed from the two copies.
This is exactly the operation of the connected sum and we obtainEh ' S1 × S2#S1 × S2

(sometimes this manifold is denoted byK3). For b > 2 the same process is repeatedb

times and we obtain the connected sum ofb copies ofS1 × S2. �
We summarize our results in the following table, whereM \ nD2 denotes the two-

dimensional manifoldM with n disks D2 removed. By a recent result from Kozlov and
Ten [18] all of the combinations ofQh andEh listed in the table can even be realized by
natural Hamiltonian systems that are completely integrable.

Let us remark that in the cases without ovals of zero velocity the energy surface is the
unit tangent bundle. Most notablyQ = Qh ' S2 givesEh ' RP 3 andQ = Qh ' T 2 gives
Eh ' T 3. All possibleEh can be realized as mechanical systems. However, most often one
encountersS3, S1 × S2, RP 3 and T 3. In the dynamics of the spinning top one can find
#2S1 × S2 and #3S1 × S2 [9, 11, 12].

χ(Qh) 1 0 −1 · · · 1 − b

b 0 1 2 · · · b

Eh S3 S1 × S2 #2S1 × S2 · · · #bS1 × S2

B S2 T 2 R2
2 · · · R2

b

Q Qh

S2 S2 \ D2 S2 \ 2D2 S2 \ 3D2 · · · S2 \ (b + 1)D2

R2 D2 D2 \ D2 D2 \ 2D2 · · · D2 \ bD2

R × S1 D2 D1 × S1 D1 × S1 \ D2 · · · D1 × S1 \ (b − 1)D2

T 2 T 2 \ D2 · · · T 2 \ (b − 1)D2

...
...

R2
g R2

g \ (b + 1 − 2g)D2

...

R2
[b/2] \ D2
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3. Non-existence of complete transverse Poincaré sections

With the complete list of topologies of compact energy surfaces of natural Hamiltonian
systems with two degrees of freedom at hand, we now want to show that in all cases,
exceptS1 × S2 and T 3, a complete transverse Poincaré section is impossible. Using the
result of the last section we see that the two exceptions are obtained fromQh that contain
S1 as a trivial factor, i.e. forQh ' S1 × D1 or T 2.

Let the Poincaŕe section be defined by a smooth functionS(q, p) = 0 on phase space.
The surface of section6h is obtained by restriction to the energy surface,

6h = {(q, p) ∈ T ∗Q | H(q, p) = h, S(q, p) = 0}. (13)

If there is more than one component each of them can be treated separately. Excluding
cases with critical points,6h is a Riemann surface of arbitrary genus embedded inEh. The
equations of motion are given by the Poisson bracketḞ = {F, H }. The surface of section
is transversal to the flow if

Ṡ|(q,p) 6= 0 for all (q, p) ∈ 6h. (14)

Then the Poincaré mapP : 6h → 6h is defined by

(q, p) ∈ 6h 7→ gτ(q,p)(q, p) ∈ 6h (15)

wheregt denotes the Hamiltonian flow andτ(q, p) is the first return time. We assume that
the section is transverse and6-complete [13], i.e. that every orbit starting on6h returns to
6h and thereforeτ is finite andP is well defined on all of6h. A Poincaŕe section with these
properties will be called complete and transverse in the following. The Poincaré mapP has
degree one due to the existence and uniqueness of the solutions of the differential equation
which connects pre-image and image by an integral curve. HenceEh has the structure of a
fibre bundle with baseS1 and fibre6h [17]. Let φ be in S1. For every base pointφ the
fibre consists of all pointsgφτ(q,p)/2π (q, p) such that(q, p) ∈ 6h for φ = 0. The converse
formulation is that given the Poincaré mapping the energy surface can be obtained by a
suspension into a flow which automatically creates the structure of fibre bundle with base
S1 and fibre6h.

In [13] we have shown that forEh ' S3 the existence of a transverse section is in
contradiction with Liouville’s preservation of phase space volume. In the following we use
different arguments based on the above bundle structure to treat the general case.

Proposition 3. A complete transverse Poincaré section for a natural two degrees of freedom
Hamiltonian system with compactQh can only exist for energy surfaces homeomorphic to
S1 × S2 or T 3. If it exists it can only be realized by the trivial bundle.

Proof. Let us assume there exists a complete transverse section inEh. This implies that
Eh admits the structure of a fibre bundle with baseS1 and fibre6h

Eh

6h−→ S1 (16)

as already explained. Let us consider the exact homotopy sequence of this bundle

π2(S
1) → π1(6h) → π1(Eh) → π1(S

1)

0 → π1(6h) → π1(Eh) → Z (17)

which implies

π1(Eh)/π1(6h) = Z (18)

and therefore

π1(6h) ⊂ π1(Eh). (19)
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If Eh is a direct product withS1 this is obviously possible because

π1(M × N) = π1(M) × π1(N).

For the energy surfaceS1 × S2 andT 3 we have the trivial bundles as a possible solution.
For all other energy surfaces of natural system the bundle structure (16) is impossible.

We first treat the cases with ovals of zero velocity. Becauseπ1(S
3) = id (19) cannot hold

becauseid does not have a non-trivial subgroup. Therefore the energy surfaceS3 does not
admit the bundle structure (16) and therefore does not admit a complete transverse section.
For all the other cases of energy surfaces where there are ovals of zero velocity inQh we
haveb > 1 and

π1(#
bS1 × S2) = π1(S

2 × S1) ∗ · · · ∗ π1(S
2 × S1) = Z ∗ Z ∗ · · · ∗ Z (20)

i.e. π1 is a free group withb generators. Every subgroup of a free group is a free group,
so by (19)π1(6h) must be a free group. But6h is a Riemann surfaceR2

s of arbitrary
genuss andπ1 of any Riemann surface never is a free group fors > 0 [17], which gives
us a contradiction. Fors = 0 we haveπ1(S

2) = id and (18) givesπ1(Eh) = Z, which
contradicts (20) becauseb > 2.

We now turn to energy surface obtained fromQh without ovals of zero velocity. If
Q = Qh = S2 we haveEh ' RP3 and π1(RP3) = Z2 is a finite group, so that similar to
the case ofS3 equation (19) cannot be fulfilled. ForQ = Qh = T 2 we have already seen
that Eh = T 3 admits a complete transverse section.

The remaining cases are the energy surface obtained fromQ = Qh = R2
g with g > 1,

i.e. the corresponding unit tangent bundles. These energy surfaces already carry a bundle
structure, but with baseR2

g and fibreS1

Eh
S1−→ R2

g g > 2 (21)

as opposed to the required structure for a complete transverse section in (16) with6h = R2
s ,

Eh

R2
s−→ S1 s > 0. (22)

Denote each of the unit tangent bundles described by (21) byU and each of the manifolds
admitting a complete transverse Poincaré section byP . We now show thatGu = π1(U)

andGp = π1(P ) are different for any choice ofU andP . The method of proof is inspired
by [19].

Let us first treat the cases withs > 2. As usual for any groupG denote byC(G) is
centre and by [G, G] its commutant. NowU andP are different because

[Gp, Gp] ∩ C(Gp) = id (23)

but

[Gu, Gu] ∩ C(Gu) 6= id (24)

contains at least an infinite cyclic group.
In (18) we observed thatGp contains a normal subgroupG′

p isomorphic toπ1(6h),
such thatGp/G′

p = Z = π1(S
1). In particular the factor group is commutative. Since

the commutant is a minimal normal subgroup such that the corresponding factor group is
commutative we have [Gp, Gp] ∈ G′

p. But the fundamental group of a Riemann surface
has no centre, i.e.C(G′

p) = id. Therefore,G′
p does not intersect withC(Gp) and so does

not [Gp, Gp], because it is a subgroup ofG′
p and we obtain (23).

Consider the groupGu now (see, e.g., [17]). It can be represented as the group generated
by a1, b1, . . . , ag, bg with the following relations.
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(i) Let α be the Euler number of the unit tangent bundleU . Then

a1b1a
−1
1 b1−1 . . . agbga

−1
g b−1

g = zα. (25)

In our caseα is just the Euler characteristicχ = 2 − 2g.
(ii) z commutes with any element of the groupGu. In particularzα belongs toC(Gu).
But it is easily seen from the first relation thatzα ∈ [Gu, Gu]. So the intersection

[Gu, Gu] ∩ C(Gu) contains a leastzα as stated in (24). Therefore we have shown that the
fundamental groups are different, so the manifoldsU andP are also different.

Now we have to consider the casess = 0, 1, where the surface of section6h is S2 or
T 2. In the case of the torusπ1(P ) can be generated by three generatorsa, b, andz with
the relations

ab = ba

zaz−1 = φ(a) (26)

zbz−1 = φ(b)

where φ is some automorphism of the fundamental group ofT 2, i.e. the commutative
subgroup generated bya andb. It follows from this that the 1-homology group has at least
one generator of infinite order and no more than three generators. But the corresponding
homology group forU has more than three generators (g > 2). In the case of the sphere
as a surface of section the first homology group ofP is Z so the same argument holds as
for T 2, which concludes the proof that for the unit tangent bundles ofR2

g with g > 2 there
does not exist a complete transverse section.

Finally we show that for the casesEh = S1×S2 andEh = T 3 where a complete transverse
section exists it can only be constructed from the trivial bundle with6h = S2, respectively
6h = T 2. Recall that in both casesπ1(Eh) is commutative. Now both manifolds cannot
be realized asS1 bundles with baseR2

g, g > 2, because the homotopy group of this bundle
contains the non-commutative homotopy group of the baseR2

g as a subgroup, see (19). In
the case ofEh ' T 3 we haveπ1(Eh) = Z3. But as already mentioned the homology group
of the 6h = S2 bundle overS1 has only one generator, so that the only possibility is with
6h = T 2. Moreover, we must haveφ = id in (26) in order to obtainZ3. Therefore the
Poincaŕe section must be obtained from the trivial bundle. ForEh ' S1 × S2 we have
π1(Eh) = Z. But the homotopy group of theS1 bundle of6h = T 2 containsπ1(6h) = Z2

as a subgroup so the only possibility is with6h = S2. Finally the only orientableS2 bundle
over S1 is the trivial bundle. �

4. Discussion

The difficulty in establishing a complete transverse section was already noted by Birkhoff
[5], who required a coordinate transformation to exist, which globally introduces an angle
φ in Eh and moreover thaṫφ 6= 0. We were not dealing with the second requirement here.
Instead we have shown that there are topological obstacles for the existence of such an angle
in most energy surfaces,independentlyof the dynamics. We established the non-existence
of complete transverse sections in most cases. In particular, there never exists a complete
transverse section for geodesic flows on compact orientable Riemann surfaces. For the
question of existence in the exceptional casesEh ' S1 × S2 or T 3 the dynamical system
has to be considered, i.e. Birkhoffs second condition has to be checked. This additional
condition makes it difficult to find complete transverse sections even in the two special
cases. In [13] we have shown that for time-reversal Hamiltonians transverse sections for
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which6h has the same symmetry are impossible. The only examples of complete transverse
sections we know of (except for a trivial time periodic forcing which we are not considering
here), have a strong vector potentialA(q) breaking the time-reversal symmetry (of course
their Qh must be a torus or a cylinder) [13]. These considerations have been our motivation
to drop the requirement of transversality and instead try to construct Poincaré sections that
are complete, see [13]. We suspect that it is impossible to find a transverse and complete
Poincaŕe section for a natural time-reversible Hamiltonian system.
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